Hidden hybrid Markov/semi-Markov chains

نویسنده

  • Yann Guédon
چکیده

Models that combine Markovian states with implicit geometric state occupancy distributions and semi-Markovian states with explicit state occupancy distributions, are investigated. This type of model retains the flexibility of hidden semi-Markov chains for the modeling of short or medium size homogeneous zones along sequences but also enables the modeling of long zones with Markovian states. The forwardbackward algorithm, which in particular enables to implement efficiently the E-step of the EM algorithm, and the Viterbi algorithm for the restoration of the most likely state sequence are derived. It is also shown that macro-states, i.e. seriesparallel networks of states with common observation distribution, are not a valid alternative to semi-Markovian states but may be useful at a more macroscopic level to combine Markovian states with semi-Markovian states. This statistical modeling approach is illustrated by the analysis of branching and flowering patterns in plants.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Taylor Expansion for the Entropy Rate of Hidden Markov Chains

We study the entropy rate of a hidden Markov process, defined by observing the output of a symmetric channel whose input is a first order Markov process. Although this definition is very simple, obtaining the exact amount of entropy rate in calculation is an open problem. We introduce some probability matrices based on Markov chain's and channel's parameters. Then, we try to obtain an estimate ...

متن کامل

Exploring the state sequence space for hidden Markov and semi-Markov chains

The knowledge of the state sequences that explain a given observed sequence for a known hidden Markovian model is the basis of various methods that may be divided into three categories: (i) enumeration of state sequences; (ii) summary of the possible state sequences in state profiles; (iii) computation of a global measure of the state sequence uncertainty. Concerning the first category, the gen...

متن کامل

On Triplet Markov Chains

The restoration of a hidden process X from an observed process Y is often performed in the framework of hidden Markov chains (HMC). HMC have been recently generalized to triplet Markov chains (TMC). In the TMC model one introduces a third random chain U and assumes that the triplet T = (X,U, Y ) is a Markov chain (MC). TMC generalize HMC but still enable the development of efficient Bayesian al...

متن کامل

Unsupervised segmentation of hidden semi-Markov non-stationary chains

In the classical hidden Markov chain (HMC) model we have a hidden chain X , which is a Markov one and an observed chain Y . HMC are widely used; however, in some situations they have to be replaced by the more general “hidden semi-Markov chains” (HSMC), which are particular “triplet Markov chains” (TMC) ) , , ( Y U X T = , where the auxiliary chain U models the semi-Markovianity of X . Otherwis...

متن کامل

Unsupervised segmentation of new semi-Markov chains hidden with long dependence noise

The hidden Markov chain (HMC) model is a couple of random sequences (X,Y), in which X is an unobservable Markov chain, and Y is its observable ‘‘noisy version’’. The chain X is a Markov one and the components of Y are independent conditionally on X. Such a model can be extended in two directions: (i) X is a semi-Markov chain and (ii) the distribution of Y conditionally on X is a ‘‘long dependen...

متن کامل

Relative Entropy Rate between a Markov Chain and Its Corresponding Hidden Markov Chain

 In this paper we study the relative entropy rate between a homogeneous Markov chain and a hidden Markov chain defined by observing the output of a discrete stochastic channel whose input is the finite state space homogeneous stationary Markov chain. For this purpose, we obtain the relative entropy between two finite subsequences of above mentioned chains with the help of the definition of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2005